

Corso di procedure infermieristiche

Cenni di Matematica

Paola Rueca Ospedale Veterinario Gregorio VII

- La matematica è importante nel lavoro del tecnico veterinario
- È necessario saper interpretare la prescrizione del veterinario e riportarla a dovere
- La matematica riguarda:
 - Diluizioni
 - Ricostituzione dei farmaci
 - Dosi corrette
 - Tempo e velocità di somministrazione

 Il tecnico veterinario deve avere dimestichezza con il calcolo e le unità di misura per una sicura preparazione e somministrazione

Un errore su sei è dovuto a errori di calcolo

Sistema metrico decimale

- Scala dei grammi:
 - Kg hg dag g -dg cg mg (mcg. ng)
- Per convertire i **mg** in **g** si divide per 1000 spostando la virgola decimale di 3 cifre verso sinistra

1000 mg = 1 gr250mg = 0.25 gr

Convertiamo 1250 mg in g

kg	hg	dag	g	dg	cg	mg	
			1	2	5	0 ,	
			+				
			1,	2	5	0	

Microgrammo

 Un microgrammo mcg (μg) è la milionesima parte di un grammo ovvero un millesimo di milligrammo

$$1 \mu g = 0.01 \, mg$$

Nanogrammo

Un nanogrammo (ng) è la miliardesima parte del grammo ovvero la milionesima parte del milligrammo (ossia un millesimo di microgrammo)

 $1 \text{ ng} = 0.01 \,\mu\text{g}$

Scala dei litri:

▶ Hl - dal - l - dl - cl - ml

Per convertire **ml** in **l** si divide per 1000 spostando la virgola decimale di 3 cifre verso sinistra

1000 ml = 1 l350ml = 0.35 l

Unità internazionali

- Farmaci sono misurati in Unità Internazionali quando la loro efficacia è determinata dal tipo di azione e non dal peso fisico
- Sono 3 i farmaci principali misurati in UI
 - Eparina
 - Insulina
 - Penicillina

IMPORTANTE

1 UI di insulina **NON** è uguale a 1 UI di eparina 1 ml di e**parina** = 5000 UI 1 ml di **insulina** = 100 UI

MilliEquivalenti

- Gli elettroliti sono sostanze inorganiche che in soluzione danno luogo alla formazione di **ioni** dotati di carica elettrica
- La concentrazione di elettroliti (KCl, NaCl, ecc.) presenti nella soluzione è espressa in milliEquivalenti per litro (mEq/L) o in milliEquivalenti per ml (mEq/ml)
- L'equivalente corrisponde al peso atomico dello ione diviso la valenza
- Il milliEquivalente è uguale alla millesima parte di un equivalente

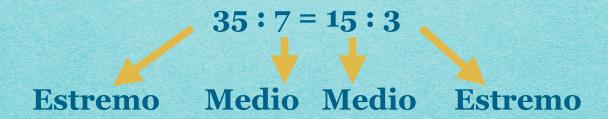
ATTENZIONE!!!!!

Le preparazioni iniettabili, la cui concentrazione viene espressa in mEq/ml, risultano normalmente troppo concentrate per l'impiego immediato per cui si somministrano per fleboclisi lenta dopo una diluizione in soluzione adatta

Esempio

Si devono somministrare 15 mEq di NaCl e si hanno a disposizione fl da 2mEq/ml

2mEq : 1 ml = 15 mEq : x ml


1 x 15 / 2

7,5 ml

• I 7,5 ml saranno inseriti in una soluzione e somministrati lentamente

Proporzione

Una proporzione è un'uguaglianza di due rapporti

Calcolo del termine incognito X

Estremo incognito

$$200:5=50:X$$

$$X = 5 \times 50 / 200 = 1,25$$

Risultato 200:5 = 50:1,25

Verifica $200 \times 1,25 = 250$

$$5 \times 50 = 250$$

Medio incognito

$$20:4=X:50$$

$$X = 20 \times 50/4 = 250$$

Verifica
$$20 \times 50 = 1000$$

$$4 \times 250 = 1000$$

Conclusione

- In una proporzione
 - il valore di un *estremo incognito* è uguale al prodotto dei medi diviso l'altro estremo
 - il valore di un *medio incognito* è uguale al prodotto degli estremi diviso l'altro medio
 - Le unità di misura devono essere omogenee a due a due
 - mg:g=mg:g
 - mg : cpr = mg : cpr

Esempio:

Si ha un flacone di cefazolina da 250mg/ml, Se ne vogliono somministrare a un paziente 400 mg. Quanti ml si devono impiegare?

> 250:1 = 400:X $1 \times 400 / 250 = 1,6 \text{ ml}$

> > Dose in mg x peso in kg concentrazione farmaco

Esempi

- Una fiala di atropina contiene 0,5 mg. Al paziente dobbiamo somministrare 0,1mg. Quanti ml dobbiamo somministrare?
 - 0.5 mg : 1 ml = 0.1 mg : x
 - 1 per 0.1 / 0.5 mg = 0.2 ml

- Una siringa di insulina è da 40
 UI/ml. Il nostro paziente pesa
 12 Kg e deve ricevere 0,5 UI/
 kg. Quanta insulina si deve
 somministrare?
 - 12 Kg per 0,5 UI = 6 UI
 - 40 UI:1 ml = 6 UI:x
 - $1 \times 6 / 40 = 0.15 \text{ ml}$

Percentuali

- La percentuale è un altro metodo per esprimere rapporti e frazioni
- In questo caso il simbolo utilizzato è %
- È utilizzata per confrontare le parti di un intero
- Può essere indicata come un rapporto a 100 o come il decimale equivalente
 - ≥ 25% = 25/100 oppure 0,25

Esempio

- In una pensione per cani nel reparto A 8 cani su 25 hanno contratto il cimurro. Nella sezione B 13 cani su 30 hanno contratto il cimurro
- In quale sezione è più alta la % di cani che hanno contratto il cimurro?
- $8:25 = 0.32 \times 100 = 32\%$
- 13:30 = 0,43 x 100 = 43%

Concentrazione di un farmaco in %

- Una concentrazione dell' X% equivale a X gr in 100 ml
- La lidocaina ha una concentrazione del 2%
- Quanta lidocaina è contenuta in una fiala da 5 ml
 - 2gr: 100 ml = x: 5 ml
 - 2 x 5ml / 100 = 0,1 gr ovvero 100mg

Esempi

- Quanti gr di glucosio sono contenuti in 50 ml di sol.Glucosata al 5%
 - 5gr:100 = x:50
 - $5 \times 50 / 100 = 2,5gr$

- Qual'è la concentrazione di un disinfettante che contiene 2 gr in 800 ml
 - 2gr:800 = x:100
 - $2 \times 100 / 800 = 0.25\%$

Quanto glucosio è stato somministrato se sono stati infusi 220 ml di sol. Glucosata al 5%

5gr: 100 ml = x: 220 5 x 220 / 100 11 gr

Calcolo fluidi e velocità di infusione

- I fluidi vengono somministrati attraverso i deflussori
- I deflussi convenzionali sono da 20 gtt/ml
- Microgocciolatoi 60 gtt/ml
- I fattori che entrano nel merito del calcolo della dose e della durata della somministrazione sono
 - Peso del paziente
 - Concentrazione del farmaco
 - Tempo di somministrazione

Velocità di infusione

- Dose x peso / tempo
- Esempio:
 - Devo somministrare 1500 ml di fluidi in 24 ore. Qual'è la velocità di infusione
 - Con deflussore normale
 - Con pompa per infusione

```
1500ml/24 ore = 62,5 ml /ora
62,5ml/60' = 1,04 ml/minuto
1,04ml x 20gtt = 20,8gtt/min
60"/20,8gtt = 1 gtt ogni 2,88"
```

7 gtt / min sono 20 ml /h che sono 500 ml nelle 24 h
14 gtt / min sono 40 ml /h che sono 1000 ml nelle 24 h
21 gtt / min sono 60 ml /h che sono 1500 ml nelle 24 h
28 gtt / min sono 80 ml /h che sono 2000 ml nelle 24 h
35 gtt/ min sono 100 ml/h che sono 2500 ml nelle 24 h
42 gtt/ min sono 100 ml/h che sono 3000 ml nelle 24 h

Diluizione

La diluizione è un processo di riduzione della concentrazione di una soluzione in una meno concentrata con l'utilizzo di un solvente (*diluente*)

Perché diluire i farmaci?

- Ridurre l'effetto sistemico nell'unità di tempo in corso di somministrazione
- Aumentare la maneggevolezza durante la somministrazione
- Facilitare il frazionamento della dose, in particolare quando sono particolarmente concentrati
- Assistenza in ambito neonatale/pediatrica

Cosa possiamo diluire?

Esempio

- Devo somministrare 80mcg di farmaco ad un cucciolo
- La confezione disponibile è di 1 fl da 2ml ad una concentrazione di 400mcg
- Come procedere?
 - Diluisco la fiala da 2ml con 8 ml di sol. Fisiologica
 - Ottengo una soluzione con una concentrazione di 400mcg/10ml

$$x = 10 \times 80 / 400$$

2 ml

Frazioni

La **frazione** è il rapporto fra due numeri **A** e **B** che ci permette di dividere un intero in parti uguali e considerarne solo alcune

Unità / denominatore x il numeratore

esempio:

- in una pensione dove sono ricoverati 20 cani, solo 3/4 di essi sono già usciti per la passeggiata. Quanti cani sono usciti?
 - Divido l'insieme di 20 in 4 sottoinsiemi (denominatore) = 20:4 = 5
 - Ogni sottoinsieme è costituito da 5 unità
 - Moltiplicando per il numeratore otterrò il valore richiesto = 5 x 3 = 15
- Voglio calcolare la percentuale partendo da una frazione?
 - Divido il numeratore per il denominatore e moltiplico per 100
 - $3:4 = 0.75 \times 100 = 75\%$

Protocolli e procedure

Si utilizzano processi standardizzati per la gestione di farmaci per uniformare i comportamenti prescrittivi e di somministrazione

Dose di farmaco da aggiungere al volume stabilito

concentrazione che voglio x volume in ml
concentrazione che ho

Fentanil

- Concentrazione 0,1 mg/2ml. = 100mcg/2ml. = 50mcg/ml
- Voglio ottenere le seguenti concentrazioni in un volume standard da 20 ml

$$5 \text{ mcg} = \dots$$
 $5 \text{ per } 20 / 50 = 2 \text{ ml}$

$$10 \text{ mcg} = \dots$$
 $10 \text{ per } 20 / 50 = 4 \text{ml}$

$$20 \text{ mcg} = \dots$$
 20 per 20 / 50 = 8ml

$$>$$
 50 mcg. =..... 50 per 20 / 50 = 20ml

ml da inserire nel volume totale sottraendo la stessa quantità Esempio 20 ml totali - 2 ml di soluzione + 2 ml di fentanyl

Fentanil

- Dobbiamo somministrare al nostro paziente di 10 kg fentanil in infusione alla dose di 4mcg/kg/min per analgesia intraoperatoria
- 4 mcg per 10 kg. = 40 mcg/min
- 50:1=40:x $1 \times 40 / 50 = 0.8 \text{ ml/min.}$
- $0.8 \times 60 = 48 \text{ ml ora}$
- Il Fentanil può essere diluito in s. Fisiologica, RLS o s. Glucosata

Protocollo di infusione

Prescrizione:

- Noradrenalina 0,05 mcg/kg/min (CRI ev)
- Peso paziente: 50 kg

Diluire 2 fl (4mg) in 50ml di sol. Glucosata 5%

0,05mcg x 50 = 2,5 mcg/min 2,5 mcg x 60min = 150 mcg/h 150 / 80mcg = 1,875 ml/h Arrotondato 1,88 ml/h

Dosi infusioni in ml/h alla concentrazione di 0,08 mg/ml (4mg/50ml)

	Peso corporeo (kg)																		
	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	105	110	115	120
0,05	1,13	1,31	1,5	1,60	1,88	2,06	2,25	2,44	2,63	2,81	3	3,19	3,38	3,56	3,75	3,94	4,13	4,31	4,5
0,06	1,35	1,57	1,8	2,02	2,25	2,48	2,7	2,92	3,15	3,38	3,6	3,82	4,05	4,28	4,5	4,72	4,95	5,17	5,4
0,07	1,58	1,84	2,1	2,36	2,63	2,89	3,15	3,41	3,68	3,94	4,2	4,46	4,73	4,99	5,25	5,51	5,78	6,04	6,3
0,08	1,8	2,1	2,4	2,7	3	3,3	3,6	3,9	4,2	4,5	4,8	5,1	5,4	5,7	6	6,3	6,6	6,9	7,2
0,09	2,02	2,36	2,7	3,04	3,38	3,71	4,05	4,39	4,72	5,06	5,4	5,74	6,08	6,41	6,7	7,09	7,42	7,76	8,1
0,1	2,25	2,63	3	3,38	3,75	4,13	4,5	4,88	5,25	5,63	6	6,38	6,75	7,13	7,5	7,88	8,25	8,63	9
0,2	4,5	5,25	6	6,75	7,5	8,25	9	9,75	10,5	11,3	12	12,8	13,5	14,3	15	15,8	16,5	17,3	18
0,3	6,75	7,88	9	10,1	11,3	12,4	13,5	14,6	15,8	16,9	18	19,1	20,3	21,4	22,5	23,6	24,8	25,9	27
0,4	9	10,5	12	13,5	15	16,5	18	19,5	21	22,5	24	25,5	27	28,5	30	31,5	33	34,5	36
0,5	11,3	13,1	15	16,9	18,8	20,6	22,5	24,4	26,3	28,1	30	31,9	33,8	35,6	37,5	39,4	41,3	43,1	45

Il calcolo del dosaggio è una pratica quotidiana. Qualunque sia il reparto in cui si esercita, vi verrà chiesto di eseguire calcoli delle dosi. È quindi essenziale conoscere le basi nei primi mesi di formazione. Questo quiz è di livello 1 ed è dedicato alle frazioni e percentuali. Per ogni domanda, puoi scegliere vero o falso

- 1. 1/4 = 2,5%
- 2. 50% = 4/8
- 3. 3/5 = 60%
- 4. 6/9 = 70%
- 5. 6,5/10 = 6,5%
- 6. 125,35/125,35 = 100%
- Martina, studentessa al 1° anno dovrebbe prelevare 3/8 di volume da un flacone di liquido di 10 ml e pertanto preleva 3 ml.
- Prodotto X è in forma liquida, in un flacone da 20ml e una concentrazione del 12%. Se l'infermiera somministrerà 2,4 g di prodotto X ad un paziente, deve iniettare una fiala da 20 ml
- In un flacone con un principio attivo G, c'è scritto 2 mg/ml. Un flacone di 10ml contiene quindi 2 mg.

În una fiala è scritto « <u>Prodotto</u> D 5% ». Il volume è di 1l. Esso contiene pertanto 5 gr di prodotto D.

1. Giulia, studentessa al 2° anno, imposta un'infusione di un prodotto H supponendo che 1 ml = 20 gocce. Il volume dell'infusione è 1 litro e la prescrizione indica che l'infusione deve essere somministrata in 12 ore. Giulia regola di conseguenza la velocità di infusione a 20 gocce/minuto.

Vero Falso

2. Il medico le ha prescritto 1g di analgesico in infusione. Questo analgesico è sotto forma di flacone pronto all'uso in infusione di 100 ml contenente 1 g di principio attivo. Il prodotto dov'essere somministrato in 30 minuti. L'infermiere regola la velocità a 67 gocce/minuto.

Vero Falso

3. Domenico, studente al 2° anno, deve somministrare 5 mg di prodotto X a un paziente. Il prodotto X è in forma di fiala - 15 ml contenente 10 mg di prodotto X. Domenico comunica quindi all'infermiera che fa da tutor che utilizzerà 7,5 ml.

Vero Falso

4. Carlo, studente al 3° anno, ha una siringa con un volume totale di 50cc, in cui il principio attivo Y è di 100mg. Si presume quindi che la pompa siringa abbia una concentrazione di sostanza attiva di 2 mg/ml.

Vero Falso

5. Un flacone di prodotto A ha un volume di 10ml ad una concentrazione di principio attivo di 3mg/ml. Si deve somministrare una dose di 9 mg di principio attivo, è necessario prelevare dal flacone 9ml.

Vero Falso

6. Mirko deve preparare un infuso aggiungendo 3 g di NaCl in una sacca da 1 litro. Ha un flacone da 20 ml di NaCl al 10%. Informa pertanto l'infermiera tutor che aggiungerà 30 ml di NaCl dosato al 10%.

Vero Falso

7. Un prodotto Z si presenta in polvere in un flacone di 50mg che dovrà essere ricostituito con la fiala di solvente di 2,5ml a disposizione. La prescrizione indica a Camilla la somministrazione di 40mg di prodotto Z. Camilla riferisce all'infermiera tutor che dovrà iniettare al paziente 1,5ml di prodotto Z ricostituito.

Vero Falso

8. La prescrizione indica la somministrazione di 10 UI di Y in pompa siringa nelle 12h. Il protocollo dell'unità operativa indica che la concentrazione della pompa siringa dev'essere di 0,5 UI/mI, il solvente è NaCl 0,9%. Matteo informa l'infermiere che la siringa avrà un volume totale di 48mI.

Vero Falso

9. Il medico prescrive un trattamento T 5 mg/h in pompa siringa. Il protocollo indica che il prodotto T in pompa siringa deve avere una concentrazione di 1 mg/ml e un volume totale di 50 ml. Leo ritiene di regolare il flusso della pompa siringa a 5ml/h e la pompa siringa dovrà essere sostituita dopo 10h.

Vero Falso

10. Il medico prescrive: il prodotto J 2 Ul/kg 12h. J si presenta sotto forma liquida di 10 ml dosati 50 Ul/ml e il paziente pesa 62,5kg. Il protocollo indica che il volume totale dovrebbe essere di 48 ml con 0,9% NaCl come solvente. Mattia prepara una siringa per la pompa siringa contenente 2,5 ml di prodotto J e 45,5 ml dello 0,9% NaCl e la velocità della pompa siringa a 4 ml/h.

Vero Falso

11. Il trattamento della ipoglicemia può essere iniziato con circa 1 ml/kg e.v. di glucosio al 50% seguito da una soluzione di mantenimento al 1.25-2.5% di glucosio. Dopo il mantenimento il medico prescrive una infusione di glucosata al 2,5% in 100ml di RLS. Carlo inserisce 10ml di glucosata al 50% in 100ml

Vero. Falso

formula x CRI di Lidocaina

Dose massima di carico (canina): 8 mg / kg

Dose CRI canina: 25-80 mg / kg / min
Dose di carico CRI felina: 10-20 / kg / min

Peso corporeo del paziente in kg:
mcg / kg / min :
volume fluidi ora:

1. $\frac{}{\text{kg}} \times \frac{}{\text{mcg / kg}} \times \frac{}{\text{minuti / ora}} = \frac{}{\text{mcg / ora}}$

2. sacca da 250 ml : ____ = _______ durata dell'infusione

3. _____ x ___ = ____ mg / ora durata infusione = ____ mg / sacca

formula x CRI di Lidocaina

Dose massima di carico (canina): 8 mg / kg

Dose CRI canina: 25-80 mg / kg / min
Dose di carico CRI felina: 10-20 / kg / min

Peso corporeo del paziente in kg: 15 mcg / kg / min : 40 volume fluidi ora: 40

- paolarueca@gmail.com